Geometric Aspects in the Theory of Krylov Subspace Methods
نویسندگان
چکیده
منابع مشابه
Solving large systems arising from fractional models by preconditioned methods
This study develops and analyzes preconditioned Krylov subspace methods to solve linear systems arising from discretization of the time-independent space-fractional models. First, we apply shifted Grunwald formulas to obtain a stable finite difference approximation to fractional advection-diffusion equations. Then, we employee two preconditioned iterative methods, namely, the preconditioned gen...
متن کاملNew variants of the global Krylov type methods for linear systems with multiple right-hand sides arising in elliptic PDEs
In this paper, we present new variants of global bi-conjugate gradient (Gl-BiCG) and global bi-conjugate residual (Gl-BiCR) methods for solving nonsymmetric linear systems with multiple right-hand sides. These methods are based on global oblique projections of the initial residual onto a matrix Krylov subspace. It is shown that these new algorithms converge faster and more smoothly than the Gl-...
متن کاملCommunication-Avoiding Krylov Subspace Methods in Theory and Practice
Communication-Avoiding Krylov Subspace Methods in Theory and Practice
متن کاملGeometric Conditions for Subspace-Sparse Recovery
Given a dictionary Π and a signal ξ = Πx generated by a few linearly independent columns of Π, classical sparse recovery theory deals with the problem of uniquely recovering the sparse representation x of ξ. In this work, we consider the more general case where ξ lies in a lowdimensional subspace spanned by a few columns of Π, which are possibly linearly dependent. In this case, x may not uniqu...
متن کاملKrylov Subspace Methods and Applications to System and Control Problems
In this report the Krylov subspace methods are reviewed and some applications in linear system theory and modern control theory are introduced. A modiication to the Arnoldi-based method to solve the Lyapunov matrix equation is also proposed.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999